

Hyperspectral OLR Retrieval Towards OLR Climate Data Record Production

Hai-Tien Lee

Cooperative Institute for Satellite Earth System Studies (CISESS, previously CICS)

Earth System Science Interdisciplinary Center (ESSIC)

University of Maryland College Park

Acknowledgment

- NOAA NCEI Climate Data Record Program
- NOAA CLASS Data Center
- NASA CERES Science Team and LaRC Data Center
- Eumetsat Polar System Software (Generic EPS-Tools: EPS format readers developed by John Jackson)
- This study was supported in part by NOAA grant NA14NES4320003 (Cooperative Institute for Climate Studies -CICS) at the University of Maryland/ESSIC.
- Thank Shi-Keng Yang (Sky) for discussions and review.

Outline

- Background
- Theoretical Basis
- Comparison of OLR Products
- Summary

Background

- NOAA/UMD OLR Climate Data Record (CDR)
 - HIRS OLR retrieval (primary), blended with Geo Imager OLR
 - 1979-Present, Global
 - 1° Daily and 2.5° Monthly
- Currently functional HIRS on NOAA-18,19 and Metop-A/M2,B/M1
 - The last HIRS is on Metop-B (since 2013)
- OLR CDR to be extended with OLR retrieved from operational hyperspectral sounder observations, supplementing/replacing HIRS
 - (09:30) Metop IASI (Infrared Atmospheric Sounding Interferometer)
 - (13:30) JPSS CrIS (Cross-track Infrared Sounder)

Theoretical Basis

Spectral OLR Model Principles

Broadband: Broadband radiance observations and Angular Distribution Model (ADM)

$$OLR = \frac{\int I_{v}(z_{r}; \theta, \phi) dv}{ADM(angles, scene, cloud, T, q, ...)}$$

Spectral: Spectral radiance observations and Spectral Angular Model (SAM)

$$OLR = \int F_{v} dv$$

$$F_{v} = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{v}(z_{t}; \theta, \phi) \cos \theta \sin \theta d\theta d\phi = SAM(I_{v_{x}}(\theta), \theta)$$

- Spectral flux estimation principles:
 - **1.** Inter-Frequency Correlations Radiances at one frequency strongly correlate with radiances at another frequency with similar absorption features.
 - 2. Intra-Frequency/Angle Correlations
 - Using <u>absorption strengths</u> to surrogate <u>optical path lengths</u>
 - Spectral flux integration can be estimated with radiances at selected angles (Gaussian quadrature)
- **Previous works**: Total LW spectrum reconstruction from IASI observations *Lee, Ellingson & Gruber* (2010); Turner, Lee & Tett (2015)

IASI OLR Model

IASI OLR Model is a 3-predictor multiple linear regression model in quadratic forms.

Predictors are natural log of IASI radiances aggregated to 10 cm⁻¹ intervals in 650-2500 cm⁻¹. (2500-2760 cm⁻¹ radiance observations not used to avoid solar contamination.)

$$OLR = \int F_{v} dv$$

$$\log(F_{v}) = a_{0}(\theta) + a_{1}(\theta)x_{1}(\theta) + a_{2}(\theta)x_{2}(\theta) + a_{3}(\theta)x_{3}(\theta) + a_{4}(\theta)x_{1}^{2}(\theta) + a_{5}(\theta)x_{2}^{2}(\theta) + a_{6}(\theta)x_{3}^{2}(\theta)$$

$$x_v(\theta) = \log(I_v(\theta))$$

RMS regression errors for **Total OLR** estimation range from **0.13 - 0.47 Wm**⁻², dominated by "FIR" spectral flux estimation errors.

Comparisons of OLR Products

Assessing Retrieval Accuracies at Instantaneous Foot-print Level

- ➤ Mean OLR Diff Relative Bias
- ➤ StdDev OLR Diff Random errors (Precision)

Data

Temporal: Jan, Apr, Jul & Oct, 2018

Instrument	Platform	Product	Ver.	Source
CERES	Terra Aqua	SSF OLR	XTRK Ed4a	LaRC/NASA
IASI	MetOp-A/02 MetOp-B/01	Level 1C		CLASS/NOAA
	•	OLR	Ver. 0.1	CISESS/UMD
HIRS	NOAA-18 NOAA-19	Level 1B		CLASS/NOAA
	MetOp-A/02 MetOp-B/01	OLR	Ver. 2.7	CISESS/UMD

Collocation and Processing

- Collocation: closest and within 0.5° to reference target FOV, regardless observing angle, within ± 60 minutes
 - LZA-Matched = |dLZA| < 5°</p>
 - Nadir = |LZA| < 10°</p>
- Daytime: 6:00-18:00 local time
- "Homogeneity" metrics: STD of OLR in 1° circle encompassing target

Mean OLR Diff

- ➤ All collocated data
- > LZA-matched
- > Nadir

Best Estimate of Precision at "Pristine Conditions"

Reducing Sampling Errors

Precision at "Pristine Condition"

- The spread of OLR in 1° circle encompassing target is a metrics for Scene Homogeneity a crucial factor for sampling errors.
- The STD OLR differences of collocated pairs is subject to the "Threshold" of Homogeneity of the scenes.
- The STD OLR difference extrapolated to Threshold=0
 represents the best estimate of the Precision at "Pristine
 Condition".

CERES July 2018 Daytime Issues

Terra-Aqua Jul2018 Daytime Issue

All Daytime (mostly N Polar)

- Relatively large Terra-Aqua biases were found in Daytime, July 2018.
- The biases occur over land.
 - Mean OLR diff between Terra and Aqua for all Daytime data [top] and for three 10°-zones [bottom] clearly show the biases in tracking with land masses, except Greenland.

Pure speculations:

- Residual degradation correction error
- Polar ADM model land/sea differences
- Snow/Ice map input bug
- ADM lookup bug

Summary

- A new high-precision OLR estimation method for hyperspectral instruments using Spectral Angular Model (SAM) has been developed, with a theoretical accuracy of about 0.2 Wm⁻².
- Mean OLR differences for IASI-CERES are on par with those within the two CERES (Terra-Aqua), with **relative biases well within** ± 1 Wm⁻².
- Best estimate of Precision (random errors) of instantaneous IASI OLR retrieval is within 2 Wm⁻², similar to those within CERES.
- Terra-Aqua for July 2018 Daytime (N. Polar) show apparent relative biases over land. (reason?)
- Slight limb dependence in IASI OLR relative CERES is shown for LZA > 50° . IASI OLR retrieval limb property is considered improved over HIRS, more agreeable with CERES.
- Future Works
 - RTM (LBLRTM) and Cloud properties
 - Spectral interval size for SAM
 - Scene discretion (Gaussian mixture model)
 - Investigate Day/Night differences in limb dependence

End

Backup Slides

IASI Instrumentation and Data

- The *Infrared Atmospheric Sounding Interferometer* (IASI) is composed of a Fourier transform spectrometer and an associated Integrated Imaging Subsystem (IIS)
- Three bands between **645 cm⁻¹ and 2760 cm⁻¹** (15.5 and 3.63 μm), with a spectral resolution of 0.5 cm⁻¹ (FWMH) after apodization (L1C spectra). (the spectral sampling interval is 0.25 cm⁻¹)

Band	Wavenumbers (cm ⁻¹)	Wavelength (µm)
1	645 – 1210	8.26 – 15.50
2	1210 – 2000	5.00 – 8.26
3	2000 – 2760	3.62 – 5.00

 Level 1C data: Calibrated apodized radiance spectra with geolocation and time stamp information at the Effective FOV (EFOV) composed of 2x2 Instantaneous FOV (IFOV) at 12 km at nadir.

References

- Ellingson, R. G., and J. C. Gille, 1978: An infrared radiative transfer model. Part I: Model description and comparison of observations with calculations. J. Atmos. Sci., 35, 523–545.
- Lee, H.-T., R. G. Ellingson, and A. Gruber, 2010: Development of IASI Outgoing Longwave Radiation Algorithm. 2nd IASI International Conference, Annecy, France, January 25-29, 2010. (Poster)
- Turner, E. C., Lee, H.-T., and Tett, S. F. B.: Using IASI to simulate the total spectrum of outgoing long-wave radiances, Atmos. Chem. Phys., 15, 6561–6575, https://doi.org/10.5194/acp-15-6561-2015, 2015.
- Warner, J. X., and R. G. Ellingson, 2000: A new narrowband radiation model for water vapor absorption. J. Atmos. Sci., 57, 1481–1496.